腾讯数码讯(周硕)最近一段时间数码圈大事件不少,可能大部分看客都被苹果吸引走了目光,对iPhone 7毫无期待的我却一直在观察NVIDIA和英特尔的口水战和他们背后的缠斗。
大数据、人工智能成巨头争抢的香饽饽
随着智能硬件设备爆炸式的增长,数据的激增速度超乎你的想象。这些数据用来干什么?每个智能硬件设备的公司都期待产品数据能够得到最大化利用,对用户使用习惯进行分析处理,进而帮助产品进一步提升智能程度。这一系列的需求不仅仅是智能手环手表所需要的,智能家居、无人驾驶、机器人未来这将成为生活当中的方方面面。
那么作为人工智能、深度学习等方面的基础,处理器、GPU和算法究竟如何布局如何搭配才能获得市场主动权从而提前赢得未来,这是英特尔和NVIDIA都在掂量的事儿。
在上个月刚刚举行的IDF上面,英特尔更是直接把会议主题完全导向大数据、人工智能、深度学习这几个热点上面。接连几次大手笔收购也看出英特尔的决心。问题是NVIDIA不会让英特尔舒舒服服,频频在这一领域有所动作,NVIDIA把英特尔搞得着实很紧张。
NVIDIA大肆宣扬GPU在深度学习上碾压CPU
为什么以往做GPU的NVIDIA和做CPU英特尔能够井水不犯河水,还能愉快合作,如今却愈发针锋相对。这主要还是因为大数据处理、人工智能、深度学习这块领域所依赖的硬件相比较传统电脑有所区别。
根据NVIDIA的说法,GPU在深度学习方面的处理效率是CPU的数倍,甚至是秒杀英特尔引以为豪的至强处理器。在人工智能领域,芯片处理效能和算法优化的作用可以说是各占50%,但在芯片的层面上,业界比较普遍的认识是GPU在人工智能、深度学习算法上的优势远高于CPU。正是因为这个原因NVIDIA才能够在人工智能和深度学习上面势头强劲。
总的来说GPU面对CPU,主要存在4个优势:1、GPU天生为并行运算优化,而CPU天生为串行指令优化,人工智能恰恰更需要强大的并行能力。2、相同的芯片面积下,GPU上可以集成更多运算单元。3、GPU的能耗远低于CPU。4、GPU拥有更大容量的存储结构,对于大量数据有缓存优势。
上半年,NVIDIA刚刚为深度神经网络推出了Tesla P100 GPU,并基于此开发了深度学习超级计算机NVIDIA DGX-1。从媒体曝光的照片来看,黄仁勋亲自把DGX-1超极计算机签上名字交付给了马斯克。钢铁侠的原型、Tesla和SpaceX的CEO这是我们熟悉马斯克的标签,实际上他也是OpenAI项目的团队领导人,这个团队正在致力于人工智能开发,但马斯克究竟用这台NVIDIA全新的超级计算机干嘛这我们不得而知。
NVIDIA与IBM联手对付英特尔
在服务器领域英特尔一直是一家独大,这毋庸置疑,IBM Power和ARM两家阵营只有微乎其微的份额。但是到了人工智能和深度学习这块,似乎英特尔的优势立刻消失了。而且IBM已经与NVIDIA推出几款新的服务器!这几款产品都针对人工智能领域,据IBM官方宣称,其在数据处理速度上比其他平台快5倍,与英特尔的x86服务器相比,每美元的平均性能可以高出80%。
除了Power处理器本身并行原理在支持大数据运算的时候有助于数据的分割多进程处理,这点比英特尔x86架构处理器有一些优势。另外就是Power在与NVIDIA的Tesla P100之间的协同工作上的效率格外高,多的技术细节我就不再这里阐述了,主要一个原因Power处理器能够对NVLink端口进行良好支持,这个端口的带宽达到40GB/s,比目前x86在用的PCI-E(仅16GB/s)更高效,从而让Power处理器与NVIDIA的GPU之间交换数据更高效。单单是接口从PCI-E迁移到NVLink,性能提升就可以达到14%。