3 基于木桶原理的近期安全防护体系
随着安全威胁的不断发展和对安全理解的不断加深,人们开始对安全本质进行思考,出现了基于木桶原理的安全防护体系。
木桶原理简单的说就是整个系统的安全系数取决于最弱一环,即短板理论,因此整个安全体系的建设就是寻找整个网络的所有安全边界,然后将这些安全边界进行防护,避免安全短板的出现。
安全领域近 10年的时间都是靠边界思想来指导安全体系建设,用网关防护类产品确定网络入口的安全边界,用网络版防病毒确定终端的安全边界,用系统加固系统确定服务器的安全边界,用 STANDARDIZATION 风险管理制度确定人的安全边界。
传统的安全防护思想就是基于木桶理论为用户构建一个完整的线式防御体系,但是攻击却是点式的,任何一点被攻陷,整个安全体系就会崩溃,因此基于目前的理论基础,安全体系建设本身就是一个花费大量力气,但成效却不好的举措。这会使安全的成本变得极其昂贵。
4 基于大数据安全的下一代安全防护体系
基于木桶理论的安全体系属于被动的威胁防御思想。事实上,真正有效的安全体系是基于主动的威胁发现思想,主动出击,主动感知威胁。
不管威胁如何演变,威胁总是遵循图 1模型。
即不管网络的安全风险点有多少个,威胁入侵只有两条路径,一条是从外网向内网的威胁入侵路径,一条是从内网向外网的威胁扩散路径。从外网向内网威胁入侵的最经典事件是黑客攻击和 APT攻击,而从内网向外网威胁扩散的最经典事件是 U盘病毒。从理论上看,只要对这两条关键威胁路径进行监测和管控,就能遏制威胁产生的态势,以最小的安全成本解决企业的安全问题。
而基于大数据安全的云 +端 +边界的安全模型,能够很好地解决这一安全问题。
图1 威胁入侵模型
安全模型如图 2所示。
图2 云+端+边界安全模型
云 +端 +边界的安全防御体系,是为了适应新的威胁的下一代的智能防御体系,整个体系包括大数据安全、边界安全和端安全 3个关键部分。
大数据安全是指基于大数据技术构建的安全威胁捕获和分析平台。分为公有云和私有云两部分。在互联网环境下,使用公有云,对于隔离网环境,则使用私有云。边界安全是指基于大数据安全技术的未知威胁发现技术。端安全是指基于大数据安全技术的终端的安全管理与防护系统。