Bing在中国推出了人立方社交人际关系搜索引擎,你可以查看一个人名的热度,TA的关系网络图,TA最亲密的好友,这款产品基于全网WEB数据以及新浪微博的开放数据。由于只能搜索人际关系,与其他知识分离了,因此人立方并没有什么起色。
随着Facebook GraphSearch的推出,Bing将知识图谱与社交网络结合起来的定位显然是尴尬的。因为Bing并没有自己的社交数据——在Space和MSN均宣告失败的情况下。
Facebook Graph Search是基于社交图谱的搜索,可以搜索“洛杉矶XX街道最近一年接待我的朋友最多的餐厅”这样的问题。GraphSearch没有大获成功,因为Facebook只有封闭的社交数据,基于这些数据能够组织的知识,能够给出的结果,能够满足的搜索场景都十分有限,它只是一款过得去的站内搜索。
Bing和Facebook的在图谱搜索上的失利说明了社交既非必要条件亦非充分条件。Google和百度完全从搜索出发基于十多年沉淀的知识图谱、用户数据,利用擅长的大数据和深度学习算法,反而可以把知识图谱做得更加全面、精准和完备。
Google 和百度在知识图谱探索上还是会有所不同。Google知识核心来自WIKIPEDIA、Freebase等网站,百度05年左右开始的UGC知识产品战略,使之拥有强大的自有知识图谱,分别来自百科、知道和贴吧这些产品的数亿条数据和关系。目前百度的知识图谱已经涵盖十几大领域,数十个类别,拥有上亿实体量。通过构建宏大的知识网络,整合碎片化信息,再以图文并茂的方式展现出来,人们便可以在轻点鼠标的片刻,迅速获取知识、找到所求。
值得一提的是,自今年以来,百度在搜索结果页上频出新产品,除了人物关系图谱外,在有焦点事件如汤唯订婚等新闻发生时,搜索结果右侧便会呈现出相关人物关系的智能推荐;每逢世界杯等重大赛事活动举办时,即时更新的时间脉络图谱也会清晰展现在右侧;而用户搜索“故宫”、“颐和园”等景区,可直接得到景点地图、人群分布图、周边交通信息、景点推荐等信息……
众所周知,知识图谱对“语义识别”技术门槛极高,对社会化开源内容有很强的支撑需求,且是依赖大量用户的行为数据库的产品形态。百度搜索本身就是一个大数据来源,同时百度还拥有来自像百度百科、百度知道、百度文库等产品的多方面数据支持,这些共同将百度打造成一个数据航母战斗群,促使百度能够在一年时间里完成了近百亿实体知识图谱的构建并且实现了平台化,这样百度知识图谱就能够快速切换支撑多个产品的发展。
知识图谱可以让用户得到全新的搜索体验,让用户更快速接近答案和服务。笔者思考的一个问题是:继阿拉丁之后,知识图谱是更强大的用户需求满足方式吗?