近日,复旦大学微电子学院教授周鹏团队针对主流电荷存储器技术,发现了制约硅基闪存技术的原理瓶颈,提供了可以应用于硅材料的器件模型,实现了超快速度,为统一存储器的发展提供了技术途径。6月3日,相关成果在线发表于《自然—纳米技术》。
闪存自1967年发明以来,由于其高密度低成本的特性,已经占据了先进非易失存储技术99%的市场。然而自从东芝公司实现商业化技术后,工作在量子隧穿机制下的硅基闪存编程时间一直在百微秒量级,无法实现对速度有较高要求的内存级应用。那么量子隧穿机制是注定不能实现更快的速度吗?
周鹏团队从源头出发,首次发现了双三角隧穿势垒超快电荷存储机理,突破了传统经验束缚,获得了内存DRAM技术级编程速度。研究人员发现,在存储与擦除的工作过程中,势垒高度决定了电荷隧穿通过的难易程度,栅耦合比决定了栅极控制电压产生的电荷密度,良好界面保证了不会引入额外沾污或缺陷。
“从以上三大方面看,现有的硅/氧化硅界面非常完美,我们发现并证明了栅耦合比、势垒高度是决定电荷存储器速度的根本因素。”周鹏告诉《中国科学报》。
据悉,研究人员根据此超快电荷存储原理建立了通用器件模型,设计并制备出同时具备三大要素的范德华异质结闪存,采用工业界标准阈值漂移测试和高温加速老化测试方案,验证了20纳秒编程时间和10年数据保持能力;并对器件进行了理论模拟计算,实验数据和理论模拟结果吻合一致;同时探讨了三大要素的不同程度缺失导致器件速度衰退的物理机制,为在硅体系中开展应用指出了原则性的研发路径。(作者:黄辛)
责任编辑:kj005
文章投诉热线:156 0057 2229 投诉邮箱:29132 36@qq.com